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ABSTRACT 

We consider nonnegative solutions of initial-boundary value problems for 

parabolic equations ut = u ~ ,  ut = (um)xx and ut = ( ] u x [ m - l u x ) z  

(m > 1) for x > 0, t > 0 with nonlinear boundary  conditions - u x  = up, 

- ( u m ) z  = uP and -lu.lm-lu~ = up for x = 0, t > 0, where p > 0. 

The initial function is assumed to be bounded,  smooth  and to have, in 

the latter two cases, compact support .  We prove that  for each prob- 

lem there exist positive critical values PO,Pc (with P0 < Pc) such that  

for p E (0, P0], all solutions are global while for p E (P0, pc] any solution 

u ~ 0 blows up in a finite t ime and for p > Pc small data  solutions exist 

globally in time while large data  solutions are nonglobal. We have pc = 2, 

- l(m + 1) Pc : m + 1 and pc = 2m for each problem, while PO = 1, Po = 2 

and Po = 2 m / ( m  + 1) respectively. 
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1. M a i n  r e su l t s  

The problem of determining critical Fujita exponent is an interesting one in the 

general theory of blowing-up solutions to different nonlinear evolution equations 

of mathematical physics. See the survey [L2] where a full list of references is 

given. 

In this paper we consider three problems for parabolic equations of nonlinear 

heat conduction type with nonlinear boundary constraints having critical Fujita 

exponents. 

The first one is formulated for the heat equation: 

u t = u x ~  f o r x > 0 ,  t > 0 ;  

(H) - u ~ = u  p f o r x = 0 ,  t > 0 ;  

u ( O , x ) = u o ( z ) > _ O  f o r x > 0 ;  s u p u 0 < o o ,  

- u ~ ( 0 )  = uS(0), 

where p is fixed and satisfies 

(1.1) P > Po = 1. 

The second problem is a generalization of the previous one to the porous media 

equation: 

(Pro) 

Here m > 1 and 

u t = ( u m ) ~ x  f o r x > 0 ,  t > 0 ;  

-(um)~: = u p f o r x = 0 ,  t > 0 ;  

u ( O , x ) = u o ( x ) > _ O  f o r x > 0 ;  s u p u 0 < o o ,  

sup ] ( u ~ - l ) ' [  < c<), uo has compact  support ,  

- ( u y ) ' ( 0 )  = uS(0). 

m + l  
(1.2) p > po - 2 

The third problem is stated for the heat conduction equation with gradient 

dependent diffusion (again with m > 1): 

ut = (lu=lm-lu~)~ for x > 0, t > 0; 

(Gin) -lu~l"-xu~ = u p for x = O, t > O; 

u ( O , x ) = u o ( x ) > O  f o r x > O ;  s u p u o < c r  



Vol. 94, 1996 CRITICAL FUJITA EXPONENTS FOR HEAT EQUATIONS 127 

sup lull < co, u0 is compactly supported, 

- [ 5(o)1 = 

The constant p is assumed to satisfy the assumption 

2m 
(1.3) P > P o =  m + l  

Local in time existence of positive classical solutions of the problem (H) (see 

[F]) or nonnegative weak compactly supported solutions to problems (Pro) and 

(G~) and comparison arguments are well-known. These questions for the degen- 

erate equations given in (Pro) and (Gin) are discussed in a survey [K]; see the 

full list of references therein. Blowing-up solutions of the problem (H) have been 

studied in many papers, see, e.g., [LP], [BGK], [Fi], [FQ], [GKS], [L2], [SGKM, 

Chapter III]. Notice that  lower bounds (1.1), (1.2) and (1.3) for problems (H), 

(Pm) and (Gin) resp. are needed for blowing-up of any solution with large enough 

initial data. It is easy to show that  if p _< P0 (P > 0) then for arbitrary initial 

functions the solution is global in time. This is done in Remarks 2.2, 3.1 and 4.1. 

We denote by Pc (> P0) the critical exponent of Fujita type. By definition, this 

means that  Pc has the following properties: 

(i) If p _< Pc (P > P0), then u(x,t) ~ 0 blows-up in a finite time for all 

nontrivial uo, 

(ii) if p > Pc, then u(x, t) is global in time for "small" u0 ~ 0. 

Case (i) is called the blow up case while case (ii) is called the global existence case. 

The terminology used in the second case is employed because there are global, 

nontrivial solutions in this case which is not the case in case (i). Analogously, 

we could call P0 the critical global existence exponent since it has the following 

property: If p > Po, there are always nonglobal solutions of each of the three 

problems listed above while if p _< P0, every solution of each the above three 

problems is global. 

We now state the main results of the paper. 

THEOREM H: For problem (H) Pc = 2, P0 = 1. 

THEOREM P: For problem (Pro) P c  = m + 1, Po = l ( m  + 1). 

2m THEOREM G: For problem (Gm) Pc = 2m, P0 = re+l" 

It is interesting to compare results given above with the critical value (Pc) 

for the Cauchy problem for equations with source and the same heat operator. 
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Consider first the equation corresponding to Theorem H and P: 

(1.4) ut = (u 'n )~  + u p for x ~ R, t > 0, 

where m > 1 a n d p  > 1. The critical exponent for (1.4) i sp* = m + 2 ,  see 

[GKMS] and [L2], [SGKM, p. 208]. For the equation with gradient-like diffusion 

and source 

(1.5) ut = (luxlm-lu~)~ + u p for x ~ R, t > 0 

the critical value is p* = 2 m +  1, see [G1] and [L2]. The fact that  in both of these 

last two equations, p* belongs to the blow up case has been proved in [G2]. 

Thus in both cases we have pc - Pc - 1. 

2. P r o o f  o f  T h e o r e m  H 

We shall use a modification of an argument of Kaplan introduced in [BL]. 

2.1 u(x,  t) blows up for large Uo. 

Let 

(2.1) r = 2 v ~ e - k ~ 2  in R+, 

where k > 0 is a constant. Then one can see r = 0, 

(2.2) r  > - 2 k r  in R+, 

and 

(2.3) 

Define 

(2.4) 

~o ~162  = 1. 

~0 ~176 F(t )  = u(x,  t ) r  

Assume now that  Uo(X) is a non increasing function and U~o(x))O as x)oo. Then 

by the Maximum Principle [F, Chapter II] we have that  ux(x,  t) < 0 for x E R+ 

and any t in the existence interval. Hence 

(2.5) F(t) < u(O,t) for t > 0. 
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Then by multiplying the heat equation by r and integrating over (0, oo) and 

using the fact that  under the above hypotheses, ux(x, t)}O as x}oo, we conclude 

that F(t) satisfies 

/7 /7 F'(t) = Cuxx ax = - r  t) + u r  ax. 

Hence, it follows from (2.2) and (2.5) that  

F'(t) >_ r - 2kF(t) 

(2.6) = 2 ~ F ( t )  [Fp_l(t)_ v /~  ] 

for t > 0. Thus, (2.6) implies that if 

/7 (2.7) F(0) = ~0(x)r & > ( v ~ )  1/(~-1), 

then F(t) blows up in a finite time. Hence, by (2.5) u(0, t) is not bounded on this 

finite interval. The analysis for arbitrary u0 large near x = 0 and not necessarily 

monotone, can be easily done by comparison. 

Remark 2.1: From the concavity arguments of [LP] we see that  for p > 1 the 

solution blows up in a finite time whenever the initial function uo(x) satisfies 

1 fo ~ 1 -~ lu'oledx < 1 uP+l(0). 
p +  

This is simply the statement that if the initial potential energy is negative, the 

solution cannot be global. A similar statement can be written down and estab- 

lished using concavity arguments for problems (Pro) and (Gin). However we shall 

proceed somewhat differently in those cases. 

2.2 Any u ~ O blows up i l l < p < 2 .  
Consider (2.7) more carefully. It is equivalent to the inequality 

V Jo (2.8) 2 uo(x)e -k~2 dx > (v/-~) 1/(p-1). 

Since u0 ~ 0, we conclude that  (2.8) is valid for arbitrarily small k > 0 if 

1 1 

2 2 ( p -  1)' 

i.e., p < 2 whence the result. 
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2.3 Global small solutions for p > 2. 

We shall look for a global supersolution of the following self-similar type: 

x 
(2.9) ft(x, t) = (T + t) -1/(2(p-1)) f(T1) , ~ -- (T + t ) l /2 '  

where T > 0 is a constant. By substituting (2.9) into the problem (H) we deduce 

that ~(x, t) is a supersolution if the function f > 0 satisfies 

1 1) f(~) f"(Tl) + f'(rl) + 2 ( ~  < 0  forT/>O,  

-f ' (o)  _> f~(o). 

(2.10) 

(2.11) 

Set 

(2.12) f(~) = Ae-a(,+b) 2, 

where A, c~, b are positive constants. Then (2.10) becomes [1 ] 
(2.13) 2(p 1----~ - 2a + 4c~2b 2 + ~b(8a - 1)r~ + c~(4c~ - 1)~ ~ _< 0 

for ~ > 0, and (2.11) is valid if 

(2.14) 2~be ~b2(p-1) >_ A p-1. 

One can see that (2.13) is valid for any 0 < b < <  1 if 

1 
(2.15) 2 ( p - 1 )  2 a < O  and 4 ~ - 1 < 0 ,  

i.e. if p > 2. Then (2.14) holds if A is small enough. Thus for p > 2 we have 

constructed a class of global supersolutions of the form given in (2.9). Therefore 

if uo(x) _< g(x, 0) for x > 0, then u _< g on N+ x [0, T) where T is the length 

of the existence interval for u by comparison. To see this, we first note that  the 

representation formula, 

/o /0 u(~, t) = a ( x ,  y, t )uo(y)ey + up(o, ~)a(x ,  O, t - ,7)e~, 

where 

G(x ,y , t )  = (47rt) -1/2 [e-(=-Y)'/4t + e -(~+y)'/4t] 

is the Green's function for the heat operator in half-space satisfying G~(x, O, t) -- 

0, and the contraction mapping principle can be used to establish the existence 

of a local, in time, solution with the same initial data as the supersolution. Since 

the supersolution is global, the local solution can be extended to a global solution. 

The details are more or less standard and we therefore omit them. 
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Remark 2.2: If p < 1 all solutions with bounded initial values are global. In 

order to establish this claim we define, for any C, c~ > 0, 

~(x, t) = e ~ 2 t ( e - ~  + C) 

in the closed quarter plane {x _> 0, t _> 0}. If we fix c~ > 1 and take 

= (1 + C) p, 

then it is easy to see that  g will be a supersolution for problem H with g(x, O) _> C 

which we may make as large as we please by choosing C sufficiently large. (The 

condition on p is used in order to insure that  the inequality e (1-v)a2t >_ 1 holds 

f o r t >  0.) 

2.4 Any u ~ 0 blows up for p = 2. 

We now use a somewhat different version of Kaplan's argument introduced 

in [BL]. From the representation formula preceding Remark 2.2, we have, with 

p = 2 ,  

/0 /o (2.16) u(x, t) = G(x, y, t)uo(y)dy + u2(0, ~)V(x, O, t - ~)dT1. 

Thus, we have 

/o /0 (2.17) u(0, t) > Co ( t -~ ) -~u2 (0 ,  ~)&? >_ Cot-�89 u2(0, ~) dy - Cot-�89 

where Co = ~/~. Then ~ > CoF(t)or  

F'  (2.18) ~ > C2t -1. 

After a quadrature, we have, for t >__ to > O, 

1 1 1 t 
F(to--~ >- -F(t----) + ~(to) >- C21nto" 

Thus, F(t) blows up in finite time and by (2.17) the same is true for u(0, t). 

This completes the proof of Theorem H. 
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3. P r o o f  o f  T h e o r e m  P 

In this section we consider p rob lem (P,~) with m > 1 and with  p sat isfying (1.2). 

3.1 u(x,  t) blows up for  large uo. 

We begin with construct ion of a nonglobal  subsolut ion of the self-similar form 
1 

_ t ) - ~ o ( v ) ,  = z (3 .1)  u ( x ,  t) = (T - 
(T - t ) ~ '  

where T > 0 is a given constant .  One can see tha t  (3.1) is a subsolut ion if the 

funct ion 0 > 0 is such t ha t  

(3.2) (0,~),,(7/) p - rn 1 
2p - (m + 1) ~/O'Q/) 2p - (rn + 1) 0(~/) 

_> 0 

for n �9 {n > 010(n) > 0} and 

(3.3) - (om) ' (O)  _< OP(O). 

We claim tha t  (3.2), (3.3) admi t s  a solution of the form 
1 

(3.4) 0(r/) = A(a  - ~).~-1 

for posit ive constants  A, a. To see this we first observe tha t  for some A, a > 0, 

(3.2) holds wi th  such 0(.) if 

m Am_ 1 > a 
(3.5.1) (m - 1) 2 - 2p - (m  + 1)" 

In  order to verify this, we see after  subs t i tu t ion  tha t  as long as 71 < a, (3.2) will 

hold if 
m A  m-1 ( p -  1)~/ a 
- - +  > 0 .  
(m - 1) 2 (m - 1)(2p - (m  + 1)) 2p - (m + 1) - 

Likewise we claim tha t  (3.3) will hold for such 0(.) provided 

Ap-mam-1  > -  (3.5.2) ~ m 
- m - 1  

for the same constants  A, a. This  is clear. If we now choose a = cA m-1 where 

c <_ m ( 2 p - m - 1 ) / ( m - 1 )  2, and then  choose A sufficiently large, we see tha t  b o t h  

(3.5.1) and (3.5.2) hold. Notice tha t  with the choice of 0 in (3.4) the funct ion 

(3.1) is a weak subsolut ion of the prob lem considered, see [K]. Thus,  if for any  

given T and A, a satisfying (3.5) the initial function u0 is such tha t  

(3.6) Uo(X) > u(x,  0) for x > 0, 

then  u(x,  t) > u(z ,  t) in ~ • (0, T),  and hence u(x,  t) blows up in a finite t ime  

which is not larger t han  T. 
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3.2 Any u ~ O blows up i f p o < p < m + l .  

We now use the idea used for a different problem in [GKMS], see also 

[SGKM, p. 208]. 

We first notice that problem (Pro) admits the following well-known self-similar 

solution (the so-called Zel 'dovich-Kompaneetz-Barenblatt  profile [K], [SGKM], 

Chapter I): 

(3.7) UB(X,t) = (T+t ) - -~- -~g(r  ~ - -  X 
(~ + t) A ' '  

where ~- >_ 0 is an arbitrary constant and g >_ 0 satisfies 

~+1 1 (3.8) (g")"(r + g'(r +~--~-g(r 
(3.9) g'(O)=O, 

and hence 

(3.1o) 9(~) = C m ( c  2 - r  

where c > 0 is an arbitrary constant and 

m - 1  c m =  

The condition (3.9) implies that us(x,  t) is a subsolution to problem (pro). 

By using well-known properties of weak solutions of problem (Pro) ([K]) we 

deduce that  there exists to _> 0 such that 

(3.11) u(O, to) > O. 

Since u(x, to) is a continuous function, there exist T > 0 large enough and small 

c > 0 such that  

(3.12) u(x, to) >_ us(x,  to) for x > 0. 

Then by comparison we deduce that 

(3.13) u(x,t) > us(x , t )  for x > 0, t > to. 
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We now prove that there exist t,  > to and T large enough so that 

(3.14) UB(X,t,) > u(x,O) for x > 0, 

where u(x, t) is the subsolution given by (3.1) and (3.4). By using the space- 

time structure of both functions uB(x, t,) and u(x, 0) given in (3.7) and (3.1) 

respectively, we conclude that (3.14) is valid if 

1 1 
(3.15) (~ + t,)-m+l >> T - ~  

and 

(3.16) (~- + t,)-~-i > >  T ~ .  

One can see from (3.15), (3.16) that such t, and T large enough exist if 

1 

T2p--:-(~--~ > >  T ~  (3.17) 

for arbitrarily large T. This implies that 

1 p - m  
(3.18) > 

2 p -  (m + 1) 2 p -  (m + 1)' 

i.e., p < m + 1. Hence, if p �9 (P0, m + 1), every nontrivial, nonnegative solution 

of (Pro) blows up in finite time. 

3.3 Global small solutions for p > m + 1. 

We shall seek a global supersolution of the self-similar form 

1 X 

(3.19) ~(x, t)  = (T + t ) - ~  f(rl), ~ = 
(T + t) 

where the function f(r/) _> 0 is such that (cf. (3.2), (3.3)) 

p -  ~ 1)of,(o ) (3.20) (fm)'(r/) + 2p - (m + + 
1 

2p - (m + 1) f(r/) < 0 

for r / � 9  {rj > 0 1 f(r/) > 0} and 

(3.21) --(fm)'(O)>fP(O). 



Vol. 94, 1996 CRITICAL FUJITA EXPONENTS FOR HEAT EQUATIONS 135 

It is easily seen that (3.20), (3.21) does not admit a solution of the form (3.4). 

Therefore we shall look for a solution which is a translate of that given by (3.10): 

(3.22) f(r/) = Bg(rl + b), 

where B > 0 and b E (0, c) 

the function (3.19), (3.22) 

fact that g(rl § b) satisfies 

are constants. It follows from results given in [K] that 

is regular enough to be a supersolution. By using the 

the identity 

1 1 
(3.23) (gm)"(71-t- b) =- - -  (rl § b)g'(rl § b) 1.g(r / § b), 0 < r /<  c -  b, 

m-I-1 m-I- 

we conclude that function (3.22) is the solution of the inequality (3.20) if 

(3.24) 

IBm-1 
- f ( r l  § b) + b) 

[ , 
+g( r /+b )  2 p - ( m + l )  

p-m ] 
2p -(-mq- 1) r] 

B ~ - I  1 
m T ] J  < 0 

for 7/E (0, c - b ) .  By substituting the function g(rl+b) given by (3.1o) into (3.24) 

we arrive at the inequality for z = *7 § b E (b, c): 

(3.25) - m - - i -  z2§ m 1 2 p - ( m §  bz 

( B  m-1 1 ) 
- e 2 \ g ~  2p-(m+l) _<0. 

Since p > m + 1 we can choose B > 0 such that 

m + l  
2p - (m + 1) 

Now set 

< B i n - l <  1" 

1 - B m - 1  
e l  ~ 

m - - 1  
2(p - m) 

e2 = ( m -  1 ) ( 2 p -  ( m +  1))' 

1 [  m + i  )] 
e 3 ~ - -  B i n - 1  

m + l  2 p -  ( m +  1 ' 

and note that  all of the e~ > 0. Setting 

R(z) = - e l z  2 + e2bz - c2e3, 
e2b 
2el 
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we see that for all z �9 R 

R(z) <_ R(z.) = b ( d  _ ) \ 4 e l  oL2e3 _< 0, 

where we have set c = (~b for a = max(l ,  ~____t~_~ 2 e ~ " ~ } "  

Finally, we note that for the function defined in (3.22) inequality (3.21) is 

equivalent to 

Or (see (3.10)), 

- B m m g m - l ( b ) g ' ( b )  > BPgP(b). 

(3.26) (BCm)P_m(c2 _ b2 ) rE11 < 2 b i n  
- m - 1  

or, equivalently, 

2~-(.,+~) 2m 
(3.27) (BCm)p-m(c~ 2 - 1)'~-1 b m-, < 1' 

m -  

which is valid if b > 0 is small enough and (~ is as above. 

Thus, for p > m + 1 there exists a nontrivial global supersolution, and hence 

a class of small global solutions satisfying u < ~ in R+ x R+. 

Remark 3.1: The fact that if p �9 [0, ~2-~] then the solution is global in time, 

can be easily proved by comparison with a global self-similar solution for p = 
m-l-1 --  po: 

2 

X 
(3.28) u , (x ,  t) = e~(T+t)h(~), ~ = ef~(T+t) , 

~(m-l) The function h(~) > 0 where T > 0, a > 0 are constants and /3 = 2 

satisfies 

for ~ > O, (3.29) (hm),,(~) + a ( m  - 2 1)~h'(~) -(~h(~) = 0 

(3.30) - (hm) ' (O)  = hP~ 

There exists a unique compactly supported solution h i~ 0 to the problem (3.29), 

(3.30), see [GP] and references therein. Therefore, for the case p = P0 we can 

choose T > 0 large enough such that Uo(X) <_ u , (x ,O)  for x > 0 and hence by 

comparison u _< u,  in R+ x R+, i.e., u ( x , t )  is global. I f p  < P0, then u , ( x , t )  

is a global supersolution whenever u,(0,  t) _> 1. Hence, we can also argue by 

comparison. 
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3.4 Any u ~ 0 blows up if p - -  m + 1. 

Here we argue as in [G2]. Assume that for p = m + 1 there exists a global (in 

time) nonnegative solution u ~ 0 to problem (Pro). Without loss of generality, 

we may suppose that  u0(0) > 0 and therefore 
1 

(3.31) u0(x) > + b) -- Cm (c - (x + 

on ~ provided that c > 0 and b C (0, c) are sufficiently small. It is convenient 

to introduce the rescaled function which corresponds to the space-time structure 

of the self-similar solution given in (3.7): 

(3.32) (1 t), = + t) ~--~ u(((1 + , 

where T -- ln(1 +t)  denotes the new time. Then the function 0 is a global solution 

of the problem 

1 
(3.33) 07 = ~(0) = (0m)r162 + ~ - -~ (~0) r  in ~,+ • ~_ ,  

(3.34) -(0m)r = 0 m+l for r = 0, ~" > 0, 

(3.35) 0(~, 0) = U0({) for ~ > 0. 

Denote by 0_(~, 7) the solution of the problem (3.33)-(3.35) with initial data 

g(x + b) given in (3.31). It follows from (3.31) that 

(3.36) 0(~, 7) > 0_(~, T) 

on P~_ • R+. Therefore _0 is also a global solution. 

We now discuss some important properties of 0_(~, T). Observe first that  since 

_0; is initially nonpositive and (_0m)r is nonpositive on the boundary, it follows 

that 0__(r T) is nonincreasing in (. 

PROPOSITION 3.1: Let 

(3.37) c2 = b2 + ( m -  1)CmJ 

Then 0_({, T) is nondecreasing in T on R+ • JR+. 

Proof'. First, we see that  (3.37) implies the compatibility condition at the origin, 

that  is (3.34) also holds when T = 0. Now set z = 0_~. Then by regularity [K] we 

have from (3.33), (3.34) that  z satisfies 

1 
(3.38) z~ = (mtgm-lz)r162 + ~-~--~(r 
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in the set {0_ > 0} and the boundary condition 

(3.39) - - (m0_m- l z )~  = (m + 1)0_mz 

in the set {~ = 0, T > 0}. (Notice that 0-(0, T) > 0 by construction so that  0_ is 

smooth on the boundary # = 0 [K].) 

Using identity (3.23) we obtain that the initial values for z satisfy 

(3.40) 

in {g(# + b) > 0}. 

z(r 0) = ~(g(r  + b)) 

1 
= (g~((~ + bike- + ~ - ~ - f  (@(~ + b))~ 

1 
lbgr162 + _ > 0 m +  

Therefore the proposition will follow from (3.38)-(3.40) and the Maximum 

Principle if we can show that a weak solution 0_ is the limit as e ~ 0 of a 

monotone sequence {~} of strictly positive classical solutions having the same 

property as solutions of problem (3.33)-(3.35) with positive initial data 0-~ (~, 0) = 

max(e, g(~+b)). (This is a rather standard regularization procedure [K].) In order 

to avoid the extra regularity assumption 0~ �9 C~.2(Q) N C 2 lf-~, 

which is necessary to justify the differentiation with respect to time, we use the 

finite difference approximation of the time derivative 

0-~(r h > 0  
( ~ ) ~  - h ' 

(see IS]). That  is, we write a linear parabolic problem for (~)h  instead of (0-~)~. 

The conclusion then follows by first passing to the limit as h ~ 0 and then as 

e ~ 0 (cf. [SGKM, Chapter V]). 

PROPOSITION 3.2: For any ~ > 0 

(3.41) +0c > lim 0-((,T) = F ( ( )  ~ 0. 
T---~-~-OO 

Proof: We argue by contradiction. Assume that  (3.41) fails for some ~o > 0 and 

hence that  limr--.+~ 0_(@, T) = +co. Since 0_ is non increasing in ~, we conclude 

that 

(3.42) lim 0-((,T) = +co  
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uniformly on [0, ~0]. However, this contradicts the estimates of subsection 3.1 as 

follows: From (3.42) we conclude that after a finite time TO = e t~ -- 1, the profile 

0_(~, TO) in the original variables will satisfy (3.6) with suitable choices of T, A, a 

of the subsolution (3.1), (3.4). This implies that 0_(r T), which was assumed to 

be global, will blow up in a finite time which is not larger than ln(1 + to + T). 

PROPOSITION 3.3: Under the above hypotheses, the function F(.) in (3.41) is a 

weak stationary solution of (3.33). That is, 

1 
(3.43) 9.1(F) _-- (Fm)r162 + ~--- i - ( (F)r  : 0 

for ~ > 0. 

Proo~ This is an immediate consequence of the fact that the problem for 0__ 

admits a Lyapunov function 

/ 3 
~(T) ~ [F(() - 0 ( ~ , r ) ]  d( ~ O, 

where 6 > 0 is small and fixed. From Proposition 3.1 we see that ~(.) is non- 

increasing and limr--,~ r = 0. From regularity and monotonicity we also 

conclude that 

and hence that 

~(7) = 10_r s)l d(ds  

Z ~ IIO_(., ds < S)nLl(5,1) (3O. 

In view of the known regularity of bounded solutions of the porous medium 

equation [K], this estimate and Proposition 3.1 permit us to pass to the limit 

as v -* oo in (3.33) and hence establish (3.43). See also [LAP, G2] for a similar 

analysis. 

In order to finish the blow up argument in this case (p = m + 1) we observe 

that  the only self-similar solutions of (3.43) are of the form given in (3.10). (This 

follows by uniqueness and a symmetrization argument.) In particular, F(0) (> 0) 

is finite. Then, by passing to the limit in the boundary condition (3.34) for _0, 

noting Proposition 3.1, and the regularity of F(.) in the region where F > 0 [K], 

we conclude that 

- (Fm)~  = F m+l for ( -- O. 
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However, functions of the form (3.10) with c > 0 do not satisfy this boundary 

condition. Thus such a bounded, stationary solution does not exist and hence the 

stabilization (3.41) cannot hold. Therefore a global solution with initial values 

satisfying (3.31) is not possible. This completes the proof in the critical case. 

4. P r o o f  o f  T h e o r e m  G 

We shall follow the same format as in the proof of the preceding two theorems. 

The constructions closely parallel (for a very good reason given in Remark 4.2 

below) those of the preceding section and consequently the presentation will be 

somewhat terse. 

4.1 u ( x , t )  blows up f o r  large Uo. 

We construct a self-similar weak subsolution of the problem (Gin) of the form 

~(x,t)  = (T - t ) - ~ / 9 ( , ) ,  
x 

(4.1) • = p - - m  

(T - t ) ~ + , ~ - ~  

where T > 0 is a given constant which blows up as t --* T - .  Assuming that  0 >__ 0 

is non increasing and sufficiently smooth, then it must satisfy the inequalities 

(p - m) , ~  m 
(4.2) (lo'lm-1/9') '(r;) 

p ( m  + 1) - 2 m  rl/9'~yj - p ( m  + 1) - 2m./9~r ~ 
>_ 0 

for ~/E {7/> 01/9(.) > 0} and 

(4.3) -I/9'(0)1~-1/9'(0) ~/gP(o). 

The system of inequalities (4.2), (4.3) admits the following compactly supported 

solution: 

(4.4) /901) = A ( a  - ~?)~_-1, 

where the positive constants A, a are such that 

I m Ira ma A m - ]  >_ (4.5.1) ~ p(m + 1) - 2m' 

(4.5.2) a ,,-1 A p - m  >_ . 
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The first of these insures that (4.2) holds while the second insures that  (4.3) 

holds. As in subsection 3.1 one can easily check that such A, a exist for any 

P > P o .  
The regularity of ~(~?) in (4.4) is sufficient for u_ to be a weak subsolution of 

problem (Gin). See [K]. (Indeed, we do not need the requirement that the sub- 

solution have a continuous derivative u x on the corresponding interface.) Hence, 

by comparison we deduce that the solution of (Gin) blows up in a finite time 

provided there exists To such that  

(4.6) uo(x) > u(x,O) = T-~cm+-~)-=~A a - xT-~(~+~)-=~)+ , 

since then u(x , t )  >_ u (x , t ) .  It is clear that  if u0(') is large enough, T > >  1 and 

a < <  1 can always be found so that (4.5) and (4.6) hold. The blow up time for 

the corresponding solution of (Gin) cannot exceed T. 

4.2 Any u ~ 0 blows up if po < p < 2m. 

Problem (Gin) possesses self-similar solutions in ~ • P~_ with u~(0, t) = 0 of 

the form 

u ( x ,  t) __ u (x, t) 1 = (T + 
X 

(4.7) ~ - 
+ 

where g > 0 solves the ordinary differential equation 

(4.8) (Ig'lm-lg') '(~) + ~ -~g ' (~ )  + ~---~g(~) = 0 

and satisfies g~(0) = 0,g(0) > 0. The solution analogous to (3.10) is given by 

m ( (4.9) g(~) - - - -  D m d ~  - m =- , 

D i n =  ~ m \ m + l ]  J 

By employing the same comparison arguments as in Section 3 (inequalities (3.11)- 

(3.14)), we conclude that the solution u(x, t) blows up in a finite time (which does 

not exceed to + t .  + T) provided that there exist r + t .  and T so large that 

�9 I r a  

(4.10) (v + t . ) - ~  > >  T-p~+I )  -2"~ 
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and 

(4.11) (7 + t,)-2--~ <<  T - ~ .  

Clearly, for fixed T, t. both (4.10), (4.11) hold for T > >  1 if 

p - - ? T t  r/2 

(4.12) p(m + 1) - 2m < p(m + 1) - 2m'  

2m that is, if p0 = ~ < p < 2m. From this we conclude that i fp  �9 (Po, 2m), every 

nontrivial solution is nonglobal. 

4.3 Global small solutions for p > 2m. 

We next construct a global weak supersolution of the (self-similar) form (cf. 

(4.1)) 

(4.13) 

~(x, t) = (T + t ) - ~ f ( r / ) ,  
x 

r /=  
(T + t ) ~  -2"~' 

where f > 0 satisfies 

(4.14) ( i , , r - l , , / , ( , /+ 
p~ ) -  

m 

p(m + 1) - 2m f(~/) < 0 

for 7/�9 {~ > 01 f(7/) > 0} and 

(4.15) - I f ' (o ) lm-xf ' (o )  > fP(O). 

Upon substitution of f(7/) : Bg(~l + b) with b �9 (0,d) into (4.14) (4.15), and 

noting from (4.8) that 

1 1 
([g'lm-lg')'(n + b) = - ~ m  (n + b)g'(n + b) - -~m g(rl + b) 

we obtain (cf. (3.24), (3.26)) 

(4.16) 
-g'(~ + b) [(7 + 2rob)Bin-1 

+g(,7 + b) p(m + 1) - 2m 

p(m + 1) - 2m] z,--11 
j _<0 
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for ~/E (0, d - b) and 

(4.17) ( B D m ) P _ m ( d . ~ _  b ~ )  '~O'-,)m-, ~_ \m(m+l~m-1} b. 

Substitution of the formula for g(~ + b) given in (4.9) into (4.16) leads to the 

equivalent inequality (with z - ~ + b E (b, d)) 

(4.19) 

Now set 

- m - - 1  z -~ t*+ ( r n - - - l ~ p - ~ 7 - ~ ) - - 2 m )  bz~  

(4.18) ( B  m - '  m )d==__~ 

2m p(m + 1) - 2m _~ 0. 

Since p > 2m we may choose B > 0 such that 

2m 2 
< B  m-1 < 1 .  

p(m + 1) - 2m 

(I-B ~-I) 
e I ~--- > O~ m--I 

m + l  p - m  
e2 -- m -  l p (m + l)  - 2m > 0 '  

B m-1 m 
e3 -- > O, 

2m p(m + 1) - 2m 

and observe that  under these circumstances (with d = ab and a > 1) (4.18) holds 

if and only if 

(4.20) R(z )  - - e l z  ~ + e2bz-~ - (o~b) - e3 <_ O. 

Now it is clear that  R(z )  is concave function of z~  which takes its maximum at 

be2 
z , -  ( l + m ) e l  

Consequently R(z )  < R ( z , )  <_ 0 provided 
1 

(4.21) a m > - -  -~a  "~ 
- r e + l e a  ( m ~ l ) e l  

We see that  (4.17) will hold for a > max(1,H), provided b is chosen so small 

that 

,~_~ - ( m +  l~ m 
(4.22) ( B D ' ~ ) P - ' ~ ! ~ a ~ - I )  "~ <- \ m - l ]  

Thus we have established the existence of a nontrivial global supersolution and 

hence completed the proof of Theorem G. 
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Remark  4.1: Ifp = Po = 2 m / ( m  + 1), then the problem (Gin) admits the global 

self-similar solution (3.28) where/3 = a ( m  - 1)/(m + 1) and h(~) > 0 solves the 

problem 

(4.23) (Ih ' lm-lh ' )  ' (~) + ~3~h'(~) - ah(~) = 0 for ~ > 0, 

(4.24) -[h'(0)lm-'h'(0) = h p~ (0). 

Equation (4.23) may be easily transformed into a first order equation. A 

simple analysis yields the existence and uniqueness of a nonincreasing compactly 

supported solution h ~ 0. By the usual comparison arguments this implies the 

existence of global solution of problem (Gin) if p E [1, Po]. Notice that in this case 

as well a similar comparison argument can be applied by using a supersolution 

of self-similar form instead of the explicit solution. 

Remark  4.2: Notice that we may reduce the equation (Gin) to the equation 

(P,~). To see this, assume for simplicity that u0 E C 1, is nonincreasing and 

has compact support. Then by the Maximum Principle ([K]), it follows that 

us(x ,  t) <_ 0 in ~_ x (0, T). Defining v(x,  t) through 

// (4.25) u(x, t) = v(~, t) d~, 

we deduce that v = - u s  _> 0 solves the initial boundary value problem 

(4.26) vt = (vm)~s in ~ x (0, T), 

(4.27) v(x ,O)=-U~o(X)  in ~+, 

(/o )" (4.28) Vm(O, t) = V(X, t) dx for t e (0, T). 

Notice that the boundary condition (4.28) is nonlocal. Thus we arrive at the fact 

that Pc = 2m is the critical exponent for this problem. This result could also 

be proved directly for problem (4.26)-(4.28) by using the comparison arguments 

with sub- and supersolutions. These comparison principles can be applied to 

this nonlocal problem since the problem generates a parabolic operator having 

the correct monotonicity properties. However, the long-term goal of our research 

is to extend the problems considered here to several space dimensions. In such 

cases, simple reductions as given here are probably not possible and it is therefore 

better to treat the problems separately. 
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4.4 Any u ~ 0 blows up if  p = 2m. 

The proof is similar to that  given in subsection 3.4 with g as in (3.31) given 

by (4.9) and the rescaled function (cf. (3.32)) 

1 1 
O((,r)  (l  +t)~-~=u(((l + t )  t) 

which is related to the self-similar solution (4.7). We omit the details. 
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